Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 13: 873701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572509

RESUMO

Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Humanos , Imunoterapia Adotiva , Latência Viral
2.
Hum Gene Ther ; 33(9-10): 560-571, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293226

RESUMO

Adeno-associated virus (AAV) vectors are proving to be clinically transformative tools in the treatment of monogenic genetic disease. Rapid ongoing development of this technology promises to not only increase the number of monogenic disorders amenable to this approach but also to bring diseases with complex multigenic and nongenetic etiologies within therapeutic reach. In this study, we explore the broader paradigm of converting the liver into a biofactory for systemic output of therapeutic molecules using AAV-mediated delivery of the endonuclease DNaseI as an exemplar. DNaseI can clear neutrophil extracellular traps (NETs), which are nuclear-protein structures possessing antimicrobial action, also involved in the pathophysiology of clinically troubling immune-mediated diseases. However, a translational challenge is short half-life of the enzyme in vivo (<5 h). This study demonstrates that AAV-mediated liver-targeted gene transfer stably induces serum DNaseI activity to >190-fold above physiological levels. In lupus-prone mice (NZBWF1), the activity was maintained for longer than 6 months, the latest time point tested, and resulted in a clear functional effect with reduced renal presence of neutrophils, NETs, IgG, and complement C3. However, treatment in this complex disease model did not extend lifespan, improve serological endpoints, or preserve renal function, indicating there are elements of pathophysiology not accessible to DNaseI in the NZBWF1 model. We conclude that a translational solution to the challenge of short half-life of DNaseI is AAV-mediated gene delivery and that this may be efficacious in treating disease where NETs are a dominant pathological mechanism.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Animais , Dependovirus/genética , Armadilhas Extracelulares/genética , Fígado , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...